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General ways of solving various inverse problems are studied for given travel time observations between sources
and receivers. These problems are separated into three components: (a) the representation of the unknown quanti-
ties appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem
used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and
some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are

also presented.

1. Introduction

Most inverse problems in geophysics which use
travel time observations between a source and a
receiver can be stated as

1

min El (T} obs — T comp(Wis 1)1 (1)

subject to
w; = f(s, wis )
&i(wi(0), wi(1);u)=0

where the vector function w;(s) describes the ray
between the source (s = 0) and the receiver (s = 1).
The vector function p may include a description of
the medium, both in terms of geometry (boundary
interfaces) and material (velocity of propagation of
elastic waves). It may also contain the unknown loca-
tion of the source (hypocenter) and the starting time
of the event. Specifically, (2) represents the differen-

(2

tial equations for two-point ray tracing in a very
general medium.

Stated in this generality the problem is probably
unsolvable. In particular, for the case of inversion, in
obtaining velocity distributions (which are considered
here to be completely general, piecewise smooth
functions, i.e. the medium considered is totally non-
homogeneous with material interfaces) there may be
a large amount of indeterminacy. The observed rays
may not sample the area under study properly. In any
case there will only be a finite number of observa-
tions to determine a general function of several vari-
ables. This points clearly to our first basic observa-
tion: Since we are only able to determine a finite
number of parameters, problem (1-2) must be refor-
mulated as an approximation problem in which the
functions m are restricted to a finite-dimensional sub-
space, preferably of dimension much less than /, the
number of observations.

Of course, this is what practitioners have been
doing for a while now (Backus and Gilbert, 1968; Aki



and Lee, 1976). We simply wish to center attention
on what is feasible, and to connect this important
problem with areas that either are well developed or
may have to be developed once connection with the
problem is established.

The most widely used technique in recent times
seems to be the ACH method or a variant of it (Aki et
al., 1977). This is just the first step indicated by our
first observation. In the ACH method, the velocity
field is appoximated by a piecewise constant func-
tion. In the most complex versions, blocks of differ-
ent sizes may be used.

Once one recognizes the connection between this
problem and that of approximating a function of
several variables from, it should be emphasized, a very
unusual kind of data, then it is possible to introduce
powerful techniques developed for other purposes.
For instance, it is possible to borrow valuable infor-
mation from the following areas.

1. 1. Finite elements or multidimensional splines

There are very elaborate techniques for generating
nonuniform triangulations that adapt themselves to
the (unknown) function being represented in order to
economize in the number of parameters needed for a
desired accuracy (Whiteman, 1976), and also a large
variety of approximating spaces from which to
choose. Standard software for one-dimensional
problems is available (de Boor, 1971) and it can be
extended easily to higher dimensions via tensor prod-
ucts (Pereyra and Scherer, 1973; de Boor, 1977).

1.2. Picture reconstruction and surface approxima-
tion from scattered data

This is perhaps an area more closely connected
with our subject than finite elements and where many
developments are occurring at present (Herman et
al., 1978). The second observation we would like to
make is: We can use readily available, high-quality,
high-performance mathematical software for solving
problem (1-2).

It is necessary to recognize the various modules
into which this problem can be subdivided, and for
which there is readily available, professionally
produced software. We have in mind essentially three
modules.
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1.3. The representation module (I)

We have to decide how to approximate the
functions p by functions restricted to a finite-dimen-
sional space. Implicit in this choice is the need for
minimizing the dimensionality of the approximating
function space in a way compatible with the informa-
tion present in the data. This process may have to be
dynamic;i.e. the approximating subspace may
change within an iteration for improving the model.
This is probably the least developed module, but
recognizing the problem may stimulate research in
this direction.

It will be assumed that a representation has been
chosen, and that an n-vector of parameters 1
describes the approximation to the desired functions
m(for instance, in the case of velocity inversion by
the ACH method, n would be the vector of the aver-
age velocities in the chosen blocks). We shall describe
the approximate problem by equations (1—2) with p
replaced by n.

1.4. The nonlinear least-squares module (1)

Clearly, once approximated, problem (1) is a
standard nonlinear least-squares problem of finding
the optimum value of the parameters n, given the /
observations T; ,ps, i = 1, ... 1. Since the N appear in
the differential equations (2) that define implicitly
the calculated quantities 7; comp, this is more prop-
erly called a “parameter identification problem”. Any
of the available iterative techniques for solving non-
linear least-squares problems can be used. In partic-
ular, they will require the solution of the two-point
boundary value problem (2) for a given i and for
each observation. Many of these techniques will also
require the partial derivatives of T comp With respect
to the n-

1.5. The direct problem (III)

As indicated in Section 1.4., it will be necessary to
solve (2) for given n and also to calculate
0T} comp/ON. Thesetasks are crucial, since in most
applications the number of observations /, i.e. the
number of rays to be calculated, is fairly large.

We shall indicate our approach to solving these
problems and describe the general software chosen,
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mainly for modules II and III. We shall also give some
specific examples and some preliminary numerical
results.

2. Some specific examples

2.1. Two dimensional velocity inversion of a general,
non-homogeneous, isotropic, smooth medium

Equations (2) for two-point ray tracing in two
dimensions have been discussed in detail by Pereyra
et al. (1978). They are

W) =w, cos ws
Wy =Wy sin ws
w3 = wao(wy, wo)[u(wy, wp) cos wy
— ux(Wy, w2) sin ws]
wa=0 3)
with the boundary conditions

wi(0)=xo, wy(0)=2¢ @
wi(D)=x¢, wy(l)=z¢
where w = (wy, w,, ws, w4)T= (x,z, ¥, S)T, u(x, z) is
the velocity of propagation of the elastic waves con-
sidered and u(x, z) = 1/u(x, z) is the slowness. Thus
(x, z) are the Cartesian coordinates of the ray, while
Y is the ray parameter. The independent variable ¢
is the normalized arc length over the ray ¢ = s/S,
where S =wy is the total arc length (unknown). The
boundary conditions specify that the desired ray joins
the two points (xg, Zo) and (xf, z¢) in the (x, z)
plane. In using arc length as independent variable,
rays that curve back on themselves present no special
problem.

The observed quantity is the arrival titne
7 =T+ T,, where T, is the origin time and T is the
travel time given by N,

1

T=w, fu(wl,wz) dt %)
0

It will now be assumed that there are a number of
stations {St;};=;, ... ., and a number of events
{Evj}; = 1, ... s which are observed at the stations.
Let Tops i be the observed first P-wave arrival time at

station 7 from source j. For simplicity it is assumed
that the hypocenter and origin times are known
already with sufficient accuracy, and that as a result
of previous studies the velocity distribution in the
area of interest can be accurately described by a
linear function of position

v(x, z) =vg tax + bz 6)

It is intended to improve the given starting values
of the parameters vy, @, b by using the information
Tobsij-

In this case, the vector n is simply

'I=(l)0,a, b) (7)

and it will influence both the differential equations
for the rays and their travel times.

2.2. Recovery of a reflector in a piecewise continuous
medium

It is now assumed that there is a curve of discon-
tinuity in the medium, say 6(x, z) =0, and that the
sources are now in the surface (explosions). Clearly in
this case, the former assumption of known source
positions and origin times holds. The arrival time
observations T ;; are now assumed to correspond to
first arrivals of P-waves reflected (once) by the mate-
rial discontinuity at 6(x, z) = 0.

Let us suppose that 6(x, z) = 0 can be accurately
represented by a piecewise linear function (broken
line). Let k be the number of linear segments of this
approximation, and let (x,, z,),v =0, ... k, be the
end-points of the segments

eap(x: 2) =z - 2)) — (Zp+1 - 2)(x — X))/ (Xpsq — Xx,)

=0 ifx € [x,,x,4] . (8)

To simplify, we shall assume that the break-point
abscissae x, are correctly positioned and that only
the depths zy, are to be adjusted. Pereyra et al. (1978)
describe how to solve ray-tracing problems in media
with very general geometries. In this particular
instance we need only to consider eq. (3) in two
parts: before and after the reflection. Each piece is
smooth and satisfies all the requirements for the
application of (3). The only difficulty is that the
contact point with the curve 6,,(x, z) = 0 is not
known. Let wy, wyy represent the ray before and after



the reflection respectively. Equation (3) is written
once for wy and once for wyy, giving eight differential
equations and apparently only four boundary condi-
tions (eq. 4). The four missing boundary conditions
are obtained by imposing the continuity of the ray at
the reflection point P;, by applying Snell’s law to the
ray parameter, and by requiring that P, be on the
curve. These conditions are:

wi(1) =wy(0)=0,
wiz2(1) = wy2(0)=0,
u(Pr) [0 (P )(sin wy3(1) — sin wyr3(0))]
— [02(P;)(cos wyz(1) — cos wyp3(0))] =0 )
6(P,)=0
From (8),
0x(Pr) = —(zvs1 — 2)/(xvs1 — x0) X € [xp,X,11] ,
0,(P)=1
The -model parameters are in this case

N=1(z0,21,...2;) and they appear only in the
boundary conditions (9).

3. Solution of the nonlinear least-squares problem

The approximate version of problem (1—2), where
all control functions that are included in the vector p
have been discretized and represented by a finite-
dimensional vector R, can be stated as

I

min El [T obs — T compWis )] (10)

subject to
wi=ft, w;n) ,
&i(wi(0), wi(1);n) =0

Here (11) represents the appropriate ray equations
and boundary conditions, of which two examples
have been given. Pereyra et al. (1978) also present the
treatment for three-dimensional ray tracing. The most
favoured technique for solving nonlinear least-squares
problems of this type is based upon the Levenberg—
Marquardt (LM) algorithm. Let us represent (10) for

(11)

aTi comp
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simplicity as
min lt(m)I3 (12)
n

where the vectort (M) = (T} obs — T; comp)i=1,... 1, and
I...1l, is the Euclidean norm.

Let tn(n) be the Jacobian matrix of the vector func-
tiont:

i=1,..1

™) = ( on;
1,...n

The LM algorithm can be briefly described as the fol-
lowing iterative process. Given a starting guess for the
unknown vector 1, say n°, one iterates according to

' l=of +y (14)

where y' is the least-squares solution to the linear least-
squares problem

o

() .

min n( M )'y — ()l (15)
Y L;

The n X n matrix L; is the Choleski factor of a positive

definite matrix K;;i.e. K; = L,TLi. Usually this matrix

is simply chosen to be a multiple of the identity matrix:

K,' = )\,I (16)

Other choices allow for some natural dynamical scalings.
The vector y* can be considered as a direction of
search which can be proven to be of descent, i.e.

lt@m’ + ;) 1 < e ()l 17

if 0 <¢; is sufficiently small. In some implementat-
tions of this method a parameter ¢; is introduced to
control the step and usually improve the convergence.
A very good implementation of this method has been
written by Moré (1978) as part of a subroutine
package for minimization.

For this and other similar methods it is necessary
to calculate the Jacobian matrix (13). The present
matrix has the form

aTi comp
e (2 )
i ( on R I
j=1,...n

From (5) it follows that

1

on; an; ofu(wn,wn)df

_ OWiq
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1

aW“ aW,'2>
+wig (u ot Uy —— ) dt (18)
i [)f Wil 317,- (] 317,'

Therefore, it is necessary to calculate the partial
derivatives of the solution to the ray equations with
respect to the parameters 1. It is known (Coddington
and Levinson, 1955) that those derivatives satisfy a
linear differential system. If a(¢) = 9w/dn;, then

a' = f,,(t, w;n) @+ 3f/dn;

(19)
Ew(0)2(0) * gw(1y®(1) = —0g/dn;

where fi, fy, 8w(0)> 8w(1)> & are the respective
Jacobian matrices. Thus, in order to obtain the

columns of the Jacobian matrix Wp, it is necessary to
solve n systems of linear ordinary differential equa-
tions of the form (19), one for each of the parameters
nj,/ =1, ... n. This seems a formidable task but it
proves to be fairly trivial and inexpensive, as will now
be indicated.

4. The direct problem. Solving the two-point ray-
tracing equations

Since Pereyra et al. (1978) discussed this problem
in great detail we shall only highlight the main points
pertinent to the present concern. Lentini and Pereyra
(1977) have shown how to solve numerically general
nonlinear two-point boundary value problems of the
form (2). In Pereyra et al. (1978) the present authors
have described the application of that general tech-
nique to two- and three-dimensional ray tracing
between two points, for both smooth and piecewise
smooth velocity distributions. We emphasize that
general isotropic, heterogeneous media are discussed
here.

General software is now available for these tasks.
Furthermore, the software is considerably more
robust and efficient than the traditional simple
shooting techniques. These general programs use com-
plex finite difference approximations on general, non-
uniform meshes. They are adaptive, i.e. the order of
the method and the mesh points are dynamically
adjusted in the course of the computation to produce
an approximate solution of a requested precision with
a minimum of effort and user intervention.

For media with piecewise constant-velocity fields,

eq. 2 reduces to a system of nonlinear transcendental
equations. These equations are as many as the
number of crossings or reflections of the ray on mate-
rial interfaces. Within regions of constant velocity
there is no need to integrate eqs. 11 since the rays are
straight-line segments. An efficient and very general
program for solving that type of problem has been
developed by Perozzi and Keller (1978). This pro-
gram, as opposed to those mentioned before, includes
calculation of amplitudes which can be useful for
other types of inversion process.

Our program for the general problem requires an
initial ray to start the iterations. The program will
usually produce a converged ray from fairly inaccu-
rate initial guesses but, as is usual in iterative pro-
cesses, the better the initial guess the faster and more
stable will be the convergence. Thus careful consider-
ation of the generation of appropriate initial guesses
has been beneficial. On smooth velocity fields a very
simple starting guess, the segment joining the two
given end-points, has been used. This corresponds to a
constant initial velocity field. For problems with
interfaces, this simple guess will usually not make a
great deal of sense.

Another possibility, which has not been imple-
mented, is to use the Perozzi—Keller program on a
simplified, piecewise constant model, in order to pro-
duce starting rays for our more general program. This
will certainly be better than taking more or less arbi-
trary piecewise linear approximations as we have
done so far, although it is not clear that it will neces-
sarily save computer time.

Another idea is to save the discrete rays from one
iteration of the LM procedure to the next. If the
model parameters have not changed radically those
should be fairly good approximations and therefore
will make all iterations after the first considerably
cheaper. Unfortunately the storage requirements may
be prohibitive.

5. A numerical example

We give now a numerical example of the type
described in Section 2.2. Shots are set on the surface
of the Earth (z = 0) at positions x5; = —4 + 2i,
i=0,1,...4, and their effect is registered at stations
on the surface with abscissae xg; j = —4 +j,j =



TABLE I

Results of numerical example

X Zguess 21 22
-5 4.00 3.69 3.72
-1.2 2.25 2.22 2.18
0 1.80 1.75 1.74
0.34 1.65 1.61 1.61
0.5 1.58 1.56 1.53
0.6 1.53 1.45 1.45
0.7 1.48 1.50 1.47
0.8 1.44 1.38 1.31
1.0 1.35 1.50 1.57
5.0 1.35 1.51 1.47
Residue 0.046 0.046 0.0042

0, ... 8. The units are kilometres. Thus there is a
total of 45 data points. The data are generated artifi-
cially by running the ray-tracing program with a
reflector 0(x, z) = 0 given by

z—1.5 , 1<x
0(x,z)={z—-1.75+025sin(n/2x), 0<x<1
z—175+7/8x , x <0

The velocity distribution was taken to be v(x, z) =
5+0.25(x +z)km s

Once the travel data had been generated we “for-
got” O(x, z) (but not v(x, z)), and tried to reconstruct
it approximately as a piecewise linear function of the
form (8). Table I presents the abscissae of the break
points, x (fixed), the guessed values of the ordinates
of the break points, Zgyegs, and the two first iterates
of the Marquardt procedure, z, z,, together with the
residual sum of squares. The number of linear seg-
ments was ten. These are just preliminary results and
we hope to obtain more comprehensive ones, both
with artificial and real data.

6. Conclusions

We have discussed a large class of inversion prob-
lems in geophysics in a unified fashion. We have iden-
tified three main components in the numerical solu-
tion of such problems: representation, optimization,
and the direct problem.

We have exemplified with some familiar problems
what we intend for the representation of the
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unknown functions in the inverse problem, while
indicating some existing powerful software for the
remaining two components. Using such software we
have shown promising numerical results.
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