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SOLVING TWO-POINT SEISMIC-RAY TRACING PROBLEMS IN A 
HETEROGENEOUS MEDIUM 

Part 1. A General Adaptive Finite Difference Method 

BY V. PEREYRA, W. H. K. LEE, AND H. B. KELLER 

ABSTRACT 

A study of two-point seismic-ray tracing problems in a heterogeneous iso- 
tropic medium and how to solve them numerically will be presented in a series 
of papers. In this Part 1, it is shown how a variety of two-point seismic-ray 
tracing problems can be formulated mathematically as systems of first-order 
nonlinear ordinary differential equations subject to nonlinear boundary condi- 
tions. A general numerical method to solve such systems in general is presented 
and a computer program based upon it is described. High accuracy and effi- 
ciency are achieved by using variable order finite difference methods on non- 
uniform meshes which are selected automatically by the program as the com- 
putation proceeds. The variable mesh technique adapts itself to the particular 
problem at hand, producing more detailed computations where they are needed, 
as in tracing highly curved seismic rays. 

A complete package of programs has been produced which use this method 
to solve two- and three-dimensional ray-tracing problems for continuous or 
piecewise continuous media, with the velocity of propagation given either ana- 
lytically or only at a finite number of points. These programs are all based on the 
same core program, PASVA3, and therefore provide a compact and flexible tool 
for attacking ray-tracing problems in seismology. 

In Part 2 of this work, the numerical method is applied to two- and three- 
dimensional velocity models, including models with jump discontinuities across 
interfaces. 

1. INTRODUCTION 

Previous literature. In order to study the heterogeneous structure of the Earth, 
seismologists have developed several techniques to trace seismic rays. For example, 
Jackson {1970), Jacob {1970), Julian (1969, 1970), and Wesson (1970, 1971) developed 
numerical techniques to trace seismic rays in an inhomogeneous medium and 
applied them to study a variety of interesting problems in seismology. The first 
three authors formulated seismic-ray tracing as an initial value problem, and the 
last author presented both initial value and b0undary value formulations. 

As Wesson (1971, p. 741) pointed out, the tracing of seismic rays between two end 
points is required in seismological applications such as earthquake location (e.g., 
Engdahl and Lee, 1976) and the determination of three-dimensional velocity struc- 
ture under a seismic array (e.g., Aki and Lee, 1976; Aki et al., 1977). A common 
approach is to solve a series of initial value problems from one end point, and to 
iteratively seek the ray that passes through the other end point. Another approach 
is to solve the two-point boundary value problem directly. Wesson (1970, 1971), 
discussed the merits Of both approaches and more recently Julian and Gubbins 
(1977) presel~ted a comparison of these two methods, concluding that the boundary 
value problem approach is computationally faster. 

Both Wesson (1970, 1971) and Julian and Gubbins (1977) used similar central 
finite difference approximations to the second order differential equations in solving 
the two-point seismic-ray tracing problem. Chander (1975) used a method due 
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originally to L. Euler which approximates the integral for the travel time by a sum 
and solves for the minimum time path directly. Yang and Lee (1976} showed that 
this formulation is equivalent to the central-difference approximation used by 
Wesson (1970, 1971). 

A different approach for solving two-point seismic-ray tracing problems has been 
introduced by Yang and Lee (1976}. They first reduced the second-order ray 
equations to a set of first-order equations, and then solved them using an adaptive 
finite-difference program written by Lentini and Pereyra (1975). For two-dimen- 
sional models where the velocity is a linear function of the coordinates, Yang and 
Lee (1976} showed that this approach gave more accurate solutions and used less 
computer time than the central-difference approach. This result is not surprising 
because considerable advances have been made by mathematicians in solving 
general two-point boundary problems [e.g., Bailey et al. (1968}; Bellman and Kalaba 
(1965}; Fox (1957}; Keller (1968, 1974); Lentini and Pereyra (1974, 1975, 1977}; 
Pereyra, {1967, 1968, 1973}; Roberts and Shipman {1972)]. Very accurate and 
efficient methods have been developed, and the method of Lentini and Pereyra 
{1975) and its successor PASVA3 which is described here represent state-of-the-art 
techniques. 

Plan of this paper. The present collaboration of two mathematicians and a 
seismologist is intended to provide a study of two-point seismic-ray tracing problems 
and to develop accurate and efficient computer programs to solve them. In Part  1 of 
this paper a general numerical method for solving ray-tracing problems will be 
described, and its use in a computer program will be discussed. Actually, this 
program is a general solver for a system of nonlinear first-order differential equa- 
tions, and has been used in many other applications (Lentini and Pereyra, {1974, 
1975, 1977}. However, the numerical method will be described in an elementary 
manner, and its relationship to the problem of two-point seismic-ray tracing will be 
shown. In Part 2 of this paper, this numerical method will be applie~d to two- and 
three-dimensional velocity models, including models with jump discontinuities 
across interfaces. 

In section 2, the equations governing the ray path in a two-point seismic-ray 
tracing problem are derived and it is shown how these equations may be reduced to 
a set of first-order equations. 

The new features of the present numerical method are described in sections 3 
through 5. High accuracy and efficiency are achieved by using variable-order finite 
difference methods on nonuniform meshes which are selected automatically by the 
program as the computation proceeds. The method requires the solution of large, 
sparse systems of nonlinear equations, for which a fairly elaborate iterative proce- 
dure has been designed. This in turn requires a special linear equation solver which 
takes into account the structure of the resulting matrix of coefficients. 

The variable mesh technique allows the program to "adapt itself" to the particular 
problem at hand, and thus it produces more detailed computations where they are 
needed, as in the case of highly curved rays. 

Section 6 shows how to deal with a heterogeneous medium in which the seismic 
velocity has discontinuities [see also Keller (1964)]. 

2. THE GENERAL Two-POINT RAY-TRACING PROBLEM 

Ray equations. Equations for the general two-point seismic-ray tracing problem 
in a heterogeneous and isotropic medium may be derived from Fermat's principle. 
If we use arc length, s, along the ray as the independent variable, then the differential 
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equation tha t  the ray must  satisfy is 

~ - V u  = 0 ,  
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(2.1) 

where 

= (x,y, z), and u(~) = 1/v(~), 

with v(y) the velocity of propagation in the medium. Finally Vu ~- (Ou/Ox, Ou/Oy, 
Ou/Oz) is the gradient of u. (All column vectors will be displayed as row vectors to 
save space.) 

Equation (2.1) may be written as a set of three second-order nonlinear differential 
equations. Naturally, we have the additional constraint 

.~2 + );2 + ~2 = 1, (2.2) 

where the dot denotes differentiation with respect to s. 
The two-point ray-tracing problem consists of finding a solution of (2.1) and {2.2) 

that  passes through two given points P0 = (xo, yo, Zo) and P1 = (xl, yl,  Zl). 
First it is shown tha t  it is enough to consider equations (2.1); i.e., if an appropriate 

initial condition is imposed then equation (2.2) will automatically be satisfied. I t  
turns out tha t  such an additional condition can be imposed because the total arc 
length of the ray between Po and P~ is also unknown. 

Let  us first expand equation (2.1): 

(Vu, ~i)~i + u/i - Vu = 0, (2.3) 

where ( , )  denotes the inner product of two vectors, if we now take the inner product 
of {2.3) with ~) and observe tha t  (~, ~) --- [[/1[12 2 = 2 2 + )~2 + ~2, we obtain 

(Vu,  ~)(1l~112 2 - 1) -4- u (~ ,  ~)  = O. (2.4) 

If  we call ~ = II ~1122 - 1 and observe tha t  (/1, ~) --- ½ d/ds(ll ~1122), 

then 

= -2v(Vu, ~}) ~. (2.5) 

Therefore, for any solution y of equations (2.1) we can write 2 2 + 9 2 + i2 _ 1 -= ~(s) 
= ~oexp[-2] f~0 v(Vu, ~) ds, and if we choose ~o = 0, then ~(s) will be identically zero 
and the constraint (2.2) will be automatically satisfied. 

Writing (2.3) in detail  leads to the following formulation for the two-point ray- 
tracing problem: 

2 = v ( - G ( y ) 2  + u~), 

y = v ( - G ( ~ ) y  + uy), 

5 = v(-G(~i)5 + u~), (2.6) 
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where G(y) = ux~ + uy); + uz~. If S is the total  length of the ray between Po and P1, 
then  the boundary  conditions are 

x(O) = Xo, y(O) = yo, z(O) = Zo, 

x ( S )  = x~, y ( S )  = y~, z (S )  = z~, (2.7) 

plus the nonlinear condition we deduced earlier 

x ( O ) 2 " 4 - y ( O ) 2  4" z ( O )  2 ~- 1. (2.8) 

Since S is unknown, the number  of conditions is appropriate.  
This  formulat ion of the three-dimensional  ray-tracing problem is similar to the 

one used by Julian and Gubbins (1977), but  not  identical. Th e  main advantage of 
using an arc length parameter izat ion lies in the fac t  tha t  the functions x(s), y(s), and 
z(s) are single valued, even when rays curve back on themselves.  

R e d u c t i o n  to f i r s t -order  systems.  In sections 3 through 5 we describe a powerful 
algori thm for solving general systems of the form 

o~' = f ( ~ ,  o~), • • [0,  1], (2 .9)  

subject  to the nonlinear boundary  conditions 

g[~(O), ~(1)] = O, (2.10) 

where o~, f, g are vector  functions of arbi t rary  dimension d. Therefore  it will be 
convenient  to express all our different ray-tracing problems in this s tandard format.  
Second or higher order  systems of ordinary differential equations can be easily 
reduced to first-order systems by introducing auxiliary variables. For  instance, 
system (2.6) reduces to 

0)1 ~ ¢.D2 

~02 = v [ - G ( 6 0 ) w 2  + Ux] 

093 ~ 094 

~o4 = v[-G(o~)oJ4 + uy] 

635 ~ 6) 6 

o~6 = v[-G(o~)o~6 + Uz] 

where G(~) = uxo~2 + UyO.~4 "4- Uz036, and the vector  

~ o = ( x ,  2, y , ~ , z , i ) .  

Since in many  of these calculations the travel t ime T = fSo u ds  is of interest,  a 
new variable, wT, is introduced to represent  the partial  t ravel  time, and we also 
introduce a corresponding differential equat ion and initial condition 

d~7 = u, ,.7(0) = O. 
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With  this addit ion the total  t ravel  t ime, T = 0)7(S) is computed  to the  same precision 
as the ray. 

In order  to de termine  the unknown p a r a m e t e r  S, we make  the  change of variables  
s --) • = s / S ,  and introduce the trivial differential equat ion S' = 0, where now pr ime 
(') will denote  differentiat ion with respect  to T. Calling 0)8 - (S), we obtain the final 
set  of equat ions 

0)1 ~- 0)80)2 

0)2 = 0)sv(-G0)z + ux) 

0)3 ~ 0)80)4 

0)4 -- 0)sv(-G0)4 + uy) 
~" E [0,1] 

0)5 ~ 0)80)6 

0)6 ---- 0)sv(-G0)6 + uz) 

0)7 ~ 0)8U 

0)8 = O, (2.11) 

with the boundary  conditions 

0)1(0) = Xo, 0)3(0) = yo, 0)5(0) -- Zo, 0)7(0) = O, 

0)1(1) = X , ,  0)3(1) = y, ,  0)5(1) = Z l ,  

0)22(0) + 0)42(0) + w62(0) - 1 -- 0. (2.12) 

T w o - d i m e n s i o n a l  r a y  t rac ing .  For  two-dimensional  problems,  say in the (x, z) 
plane, it is possible to give a s impler  formulat ion by  choosing appropr ia te  dependent  
variables.  

Equat ions  (2.1) for this two-dimensional  case become 

- -  U - -  U x  = O, 
ds  

(u Z) 
d s \  d s ]  - u z = O '  

2 

ds  ] + \--dss ] = 1. 

Int roducing the new variable ~ defined by 

d x  d z  
~ss = cos ~, ds  - sin ~, 

(2.13) 

(2.14) 

we find t ha t  

2 = - ~  and + ' = ~  
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z i  - ~ = - ¢ .  (2 .15)  

Expanding the first two equations in (2.13), multiplying respectively by ~ and 2, and 
substracting, we obtain 

u(2~ - 2~) + ~uz - ~u~ = 0. 

Using (2.15), introducing the variables 

(.0 ~ (0)1, 0)2, 033, 0-)4, 035) T ~___ (X, Z, ~ ,  S ,  T )  

and making the change of variables s ~ r = s / S ,  the resulting first order  system is 

0)1' "~-- 034 COS 0)3 

0)2' -- 0)4 sin 0)3, • e [0, 1] 

0)3' = 0)4v(0)1, 0)2)[uz(0),, 0)2)cos 0)3 - ux(0),, 0)2)sin 0)~] 

0)4' -~" 0 

505' "~- 0)4U(0)1, 032), (2.16) 

with the boundary  conditions 

0)1(0) = x0, 0)2(0) = z0, 0)5(0) = 0, 

0),{1) -- Xl, 0)~(1) = zl. (2.17) 

3. THE NUMERICAL METHOD 

The  numerical  method  used to solve equations of the form (2.9} to (2.10) (of which 
the ray tracing equations are examples) is based on a simple finite-difference 
approximation to d w / d r  on a mesh with ( J  + 1) points in the interval [0, 1]. Consider 
a mesh ~ of points (~i)J-, .... j+~ satisfying 

0 = T1 < '1"2 < " " " < TJ+I  = 1 (3.1) 

and the trapezoidal rule approximation to equation (2.9) 

W j + I -  W j _  1 
[ f ( v ,  Wj) + f(~j+l, Wj+,)], j = 1 , . . .  J ,  (3.2a) 

h i 2 

with the boundary  conditions 

g ( W ~ ,  Wj+i) = 0. (3.2b) 

Here  the d-vectors Wj are meant  to approximate 0)* (Tj), an exact solution of problem 
(2.9) to (2.10), and h j  = ~j+, - vj  is the mesh  spacing, which is n o t  assumed to be 
uniform. This  can be of importance if some component  of the solution 0)* (r) varies 
rapidly in some subregion, since then the mesh  can be made locally finer in order  to 
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resolve this anomalous behavior  in an efficient manner.  Observe tha t  this will be the 
case in ray tracing in regions where the pa th  is highly curved. 

Equat ions (3.2) form a system of ( J  + 1) x d nonlinear algebraic equations in the 
same number  of unknowns (Wi,j} i=1 ..... d,j=l ..... J+i, where Wi,j is the i th  component  
of W~. Using fur ther  vector  notat ion equation (3.2) will be referred to as the discrete 
system and will be wri t ten as 

F . ( W )  = O, (3.3) 

where 

W =  

W1, 
W2,: 

Wd, 
WL 

Wa, J+~ 

F ~ ( W )  = 

g(1)(W1) 
hi 

W2 -- Wi  - - ~  (f l  4-f2) 

h ,  
WJ+l -- Wj - ~ (~J+l "4- fJ) 

g(2 ) (Wl ,  Wj+l) 
g(a)(Wj+,) 

(-- d-vectors 

with ~ ==- f(rj, Wj). We have split the vector  g of the boundary  conditions into three 
subvectors g = (g('), gO), g(a)), of dimensions p, r, and q = d - (p + r), representing 
the initial, coupled, and end conditions, respectively. 

Under  mild assumptions, system (3.3) will have an isolated solution, W*, near  
(~o*(rj)} proCided h - maxj=l ..... g hj is sufficiently small. Moreover,  this discrete 
approximat ion will be accurate to order  h 2. T h a t  is, there  is a constant  c such tha t  

II w *  - II ~ maxi=l ..... d.j=,,... ,J+,l Wi*j - 6oi*('rj) I <= ch 2 (3.4) 

and W* can be computed by a quadratically convergent  Newton i terat ion if a 
sufficiently accurate starting t ra jectory W ° is given (cf. Keller, 1974}. 

If we call F w ( W )  the Jacobian matr ix o f F . ,  we have that  in d x d block form 

\ ° W " ]  i,;=, . . . . .  J+~ 
(3.5) 

More specifically, F w ( W )  has the following block s t ructure  

F w ( W )  = 

A, C1 O O 
B2 A2 C2 O 6 

(~  B j  A j  Cj  
D1 (3 Bj+, Aj+I 

(3.6) 

where the d × d subblocks Cj, B i have the fur ther  sparseness indicated below 
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P ~P. 

The shaded regions indicate possible non-zero elements. Finally 

D1 = } r 
! 0 }q 

In order to construct this Jacobian matrix the program requires of the user the 
Jacobian matrix of the vector function f(r ,  o~) with respect to the variables w, 
evaluated at all the grid points of the mesh ~r, and also the Jacobian matrices 
corresponding to the boundary conditions. Let us then define the d × d matrices of 
partial derivatives. 

Fw~ = \Ow~ (rj, Wj) 
i , s = l , -  . - , d  

j = l , . . . , J + l ,  (3.7a) 

and the matrices corresponding to the boundary conditions 

[ Ogi(ll 1 G~'=[°-~ , ' (w'~  ,=1 . . . . .  , , ~ = ,  . . . .  

,d 

L -o--W:~ J,=, ......... , ..... d 

a,•, = [og,,2,(w,, w~+,) ] 
. , d  

G(3) [ Ogi(31( WJ+O 1 
'*"+' = L °--w~ 

' i=1, .  - • , q , s f f i l , . .  • . d  

(3.7b) 

Then we have that  the firstp rows of A1 are G~,, D1 - G (2) w,, and the last (r + q) 
rows of Aj+l are 

/--y (2) \ 

Gw~+# 

An easy way of visualizing the rest of the matrix Fw is to think that block columns 
correspond to mesh points, while block rows correspond to equations. There is a 
little complication by the fact that the p initial conditions induce a shift of p rows 
on the whole matrix, and thus the partial derivatives corresponding to the j t h  
difference equation appear as the last (r + q} rows of block row j and the first p rows 
of block row (j  + 1). 

This ordering has been chosen because it puts Fw in almost block tridiagonal 
form; the only departure from this form is caused by D1. 
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The  necessary Jacobian matrices for the ray tracing problems (2.11) to (2.12) and 
(2.16) to (2.17) are given in the Appendix. 

4. SOLUTION OF THE NONLINEAR DISCRETE EQUATIONS 

The solution of (3.3) by Newton's method requires an initial approximation W ° 
and is then given by the iteration 
a) For v = 0, 1, • • • solve the system of linear equations 

F w ( W " ) A  W "  = - F . ( W " ) .  (4.1a) 

b) Correct  to obtain a new iterate 

W ~+, = W ~ + A W  ,'. (4.1b) 

As we said before, if W ° is a sufficiently good initial estimate, this process will 
have the proper ty  that ,  for some constant  k, 

i i w  - w ,  ll__< kll w*l l  (4.2) 

where ]1 • II stands for the infinity vector  norm defined in (3.4); i.e., the convergence 
of the sequence {W "} to the solution W* of F , ( W )  = 0 will be quadratic. I t  turns 
out  tha t  the norm of the error  at  the vth i teration is bounded by the norm of the 
residual 

II w W*ll k'lIF (W")ll, (4.3) 

so it is enough to moni tor  this residual in order  to obtain a satisfactory stopping 
criterion. Recalling that,  after all, W* is only an order  h '~ approximation to the 
discretization of ~*(t) in the mesh ~r [see {3.4)], then  it will only be necessary to 
approximate W* to a level compatible with this t runcat ion error. Thus  a reasonable 
criterion for the Newton iteration is to stop when the following inequali ty is satisfied 

IIF (W )ll 15h 2, (4.4) 

where/~ is a small constant.  
A simple Newton i terat ion as indicated above may not  be sufficient for difficult 

nonlinear problems for which a good initial est imate is not  readily available. Our 
program incorporates some additional features which make the iterative process 
more robust  and give the user some options which may be of help in difficult cases. 

A way of enhancing the global convergence propert ies  of Newton 's  method  is to 
insist tha t  the i terat ion have the proper ty  of descent  with respect  to an appropriate  
functional. We have borrowed for this purpose some techniques which are common 
in the unconstrained minimization of nonlinear functionals. 

We consider instead of (4.1b) the following step-controlled correction procedure 

W ~+' = W ~ + ~,,AW ~, (4.1b') 
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where 0 </z,. _-< 1 modifies the length of the Newton correction h W ~. Of course,/t~ 
= 1 gives the quadratically convergent Newton iteration, but again, if we are not 
close enough to the desired solution W*, the process may diverge. In order to choose 
#~ so that convergence is induced in difficult cases we consider the auxiliary 
functional 

r(W) = ½ II F.(W)11'2, (4.5) 

where II " I[ 2 stands for the Euclidean norm of a vector, i.e., the square root of the 
sum of the squares of its components. The gradient of r (W) is given by 

Vr(W) = F, TFw. (4.6) 

We shall say that  the iteration (4.1a), (4.1b') is of descent if 

r ( W  ,'+1) <_ c,,r(W~), (4.7) 

where 0 < c,, < 1 will be specified later. 
It is well known that the direction -Vr (W)  is such that the function r ( W )  

decreases the most rapidly along it, at least in a neighborhood of W. This is the so- 
called direction of steepest descent. However, any direction p that forms an acute 
angle with -Vr (W)  will also be of descent. This condition is expressed by saying 
that the functional r (W) will decrease locally along any direction p satisfying 

( -Vr(W),  p)  > 0, (4.8) 

where ( , )  denotes vector inner product. In fact, ( -Vr(W),  p)  is a positive multiple 
of the cosine of the angle formed by the vectors -Vr (W)  and p ,  and therefore (4.8) 
guarantees that this angle lies within (-~r/2, ~r/2). 

It turns out that  the Newton direction AW---- - F w - ~ ( W ) F ~ ( W )  is always of 
descent for the functional r(W),  since 

( - V r ( W ) ,  A W )  = F~r(W)F.(W) 

= IIF=:(W)II~: ~ = 2 r ( W )  > 0,  (4.9) 

and r ( W )  = 0 only if F~(W) =- 0. This means that by choosing the step size/z~ 
appropriately in the modified correction (4.1b') it is always possible to satisfy a 
condition like (4.7). In fact, general results on iterative methods for unconstrained 
minimization guarantee that the following procedure due to Armijo [see Ortega and 
Rheinboldt (1970)] will always converge under appropriate assumptions. 

Armijo's step control. Choose as #~ the first value of ~ in the sequence {1, ½, ¼, 
• . .} for which r ( W  ~) - r ( W  ~ + g h W  ~) >-- gr(W~). From (4.1b') and (4.7) we see 
then that c, = 1 - it, and that in fact such a g can always be found. A problem with 
this procedure is that in some instances it may produce a slowly convergent sequence 
by using very small steps, but that, in turn, is a sure indication that the problem is 
very difficult and that some auxiliary technique is called for. 

Observing that the two sides of identity (4.9) are computed independently, 
equation (4.9) can be used to check the accuracy of the linear equation solver. In 
fact, the correction h W is obtained by solving the system of linear equations (4.1a), 
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and although a very stable algorithm is used, more of which will be discussed later, 
it is possible for the large matrix F w ( W )  to be ill conditioned. In such a case, the 
Newton correction may be very badly computed, up to the point that the identity 
(4.9) is not even nearly satisfied. Therefore we check both the descent property and 
the approximate verification of (4.9) and if either fails, we use the negative gradient 
direction -Vr(  W ~) instead of AW ~ in (4.1b'). 

In performing step (4.1a) of the Newton iteration and also, as we shall see later, 
in computing global error estimates, it is necessary to solve linear systems of 
equations with a block quasitridiagonal matrix of coefficients of the form {3.6). Let 
us call for short A - F w ( W ) .  

A stable L U factorization for this type of matrices is described in Keller (1974). 
An alternating partial pivoting strategy guarantees the stable construction of this 
decomposition with practically no fill-in, i.e., the sparse structure of A is preserved 
in the triangular factors L U with the exception of the rows corresponding to D1 [see 
(3.6)] in L, which get filled. 

5. ERROR ESTIMATION, ADAPTIVE MESHES, AND VARIABLE ORDER OF ACCURACY 

As pointed out in section 3, the discretization (3.2} has order of accuracy h 2, even 
if a nonuniform mesh is used. Whenever there is a priori information on regions in 
which the solution ¢0 *(t) might have rapid variations it should be used to construct 
an appropriate mesh ~r. Rather than have the user worry about what is "appropriate," 
an automatic mesh selection procedure has been incorporated in this program 
which, in the course of the computation will try to find a good mesh for the problem. 
This is similar to what current state-of-the-art programs do in adaptive quadratures 
and in the solution of initial-value problems. 

The order of accuracy of the basic approximation {3.2) will usually be too low and 
higher efficiency can be achieved by considering higher order formulas. On the other 
hand, if a direct approach to obtaining this higher order is made, the simple structure 
of (3.2) will be lost. The present approach to this problem is similar to the one used 
in the adaptive techniques mentioned above. A variable-order method based on 
deferred corrections has been developed (cf. Pereyra, 1967, 1968) which, coupled 
with the variable-mesh capabilities provides a fully adaptive tool for solving a wide 
variety of nonlinear two-point boundary value problems. 

If equation (3.2) is written with W/replaced by oa*(rj) and expand in Taylor's 
series around rj + hi/2, recalling that f (rj ,  oaj*) =- oa*(rj), the so-called local 
truncation error of the method is obtained. 

oa~+1 - oo1" 1 
#PJ - h /  2 [f(~'+' ' '+*) + f(~++" " '*+')] 

h...j2 ~o*"(rj + hff2) + ¢(h4). (5.1) 
12 

Of course, further terms can be obtained by taking more terms in the Taylor 
expansion, but this will suffice for our present purposes. 

A mesh ~r shall be called equidistributing if II OJ II -- constant, j = 1, . . . ,  J.  Thus, 
roughly speaking, an equidistributing mesh will have small step sizes where the third 
derivative of the solution is large. A justification for the use of equidistributing 
meshes and an explanation on how to actually construct them can be found in 
Pereyra and Sewell (1975), and Lentini and Pereyra (1977). Here let it only be said 
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tha t  we need in tha t  process to approximate the leading term of the truncation error 
to order h 2, and tha t  can be done by using the (~(h 2) approximation Wy. Obviously 
this will lead to a two-pass algorithm, in which an initial mesh ~r ° is given and a 
discrete solution W~0 is computed. Then (1)j is estimated and the mesh is corrected 
in an a t tempt  to achieve equidistribution, and so on, until some stopping criterion 
is satisfied. This procedure has been incorporated into this program and on the 
average, only 2 or 3 passes are necessary to achieve an adequate level of equidistri- 
bution. 

Although the extra computat ion required for the above procedure adds to the 
total cost of the computation, it turns out tha t  there are at least two additional, very 
important  uses for tha t  information. Call W ° the computed (P(h 2) solution to F~(W) 
= 0, and $1( W °) the (~(h 2) approximation to the local truncation error (I). Then, by 
solving the linear problem 

Fw( W°)A = -S~ ( W °) (5.2) 

an (~(h 2) approximation to the global error Wj* - ~ *(r j) will be obtained, i.e., 

Ay = Wff - ~*(~?) + (P(h2). 

Solving equation (5.2) actually costs very little since the last available L U decom- 
position of the Jacobian matrix can be used. If  the mesh is adequate, this will usually 
be a very precise error estimate which is a feature presently lacking in most software. 

But  this is not all. It  also turns out, tha t  by solving the nonlinear problem 

F~(W) = S~ ( W °) (5.3) 

one obtains an 0(h  4) approximate solution, i.e., if W 1 is the computed solution of 
{5.3) then  

W j  I --  ~ * ( ' r j )  = (~ (h4) .  

This is the first step in the deferred correction method. As a mat ter  of fact, this 
process can be continued as long as the solution w* is sufficiently regular and as 
long as the mesh is adequate. Further  terms in the expansion of • must  be 
approximated to increasing orders and then the k th correction will be accurate to 
order h 2k+2. This high-order accuracy allows one to solve problems very precisely on 
fairly coarse meshes. Since the cost of the computat ion increases with the number  
of mesh points, this is a very important  feature. In comparison, the Julian and 
Gubbins (1977) method is only accurate to order h 2 (not h 3 as they erroneously 
indicate), and therefore it may  require a large number  of mesh points in order to 
achieve the accuracy required by the measured travel times. 

All the systems to be solved will be of the form (5.3), i.e., like the original simple 
systems for the trapezoidal rule with a nonzero right hand side of the form Sh( W k-l), 
which is a known vector. Thus the procedure explained in detail in section 4 is 
applicable to all the corrections 

F A W )  = S k ( W  k-l) (5.4) 

where W k-1 is the (P(h 2k) approximate solution after (k - 1) correction steps, and 
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Sk(W k-l) is a finite difference approximat ion  to the first k t e rms  in the local 
t runcat ion error  expansion. For  more  details on this method,  theoret ical  justification, 
and applicat ions to o ther  problems see Pe reyra  (1967, 1968, 1973} and Lentini  and 
Pe rey ra  (1974, 1977). 

All these various techniques  are a r ranged in a somewha t  complex intertwined 
s t ructure  with a mas te r  control  p rogram tha t  makes  au tomat ic  decisions on when to 
refine the mesh,  when to increase the  order, and finally when to stop with a 
sufficiently accurate  result  (and corresponding error  est imate) ,  or an error  message. 

Initialization 
Order i 2 ~ 

" --! S:t°;ln~e::iVeq::t:::et~?/S°lverELq::tir°n ] 

Error estimation ~ [ and control [[ ~ ~ 

o r d e ~  ~ o r d e r  > 2 

Mesh i no Selection 

j I Set netw starting[ 
" I order I 

[l' Increase order the 1 
Fro. 1. Flow chart for the adaptive two-point boundary value problem solver. 

A very  schemat ic  idea of this p rogram is presented  in the  flow char t  as shown in 
Figure 1. 

I t  is assumed tha t  the user  request  is for a discrete solution on a given mesh  ~r ° 
with absolute  accuracy in all its components  of size e. Of course, a relative error 
tolerance,  or a weighted error  tolerance can be incorporated if t ha t  seems more  
suitable. Thus,  the  p rog ram will a t t e m p t  to obtain W satisfying 

max  [ 13rij - wi*(V)[ ~ E (5.5) 

on a mesh  7r r containing the original mesh  ~r °, i.e., mesh  ref inements  m a y  occur. 
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After an initial check on the mesh to see if it requires refining, the basic strategy 
consists of trying to achieve equation (5.5) just  by increasing the order of the 
method.  The re  are several reasons for this s trategy 

1. The  computat ional  work involved in solving a nonlinear system like (5.4) is 
proport ional  to the number  of mesh points J .  

2. Once the first system F ~ , , ( W )  = 0 is solved, all the remaining problems are 
small per turbat ions of it, and therefore  considerable computat ional  effort can 
be saved by keeping the Jacobian matr ices and their  L U decompositions fixed 
all the  time. Of course, after  a mesh ref inement  the Jacobian matr ix must  be 
recomputed.  

3. This  procedure  will converge linearly (a quasi or modified Newton iteration) 
because the Jacobian matr ix depends on the ray path, but  the rate of conver- 
gence is usually quite high, due to the accuracy of the approximate Jacobian 
and initial guess. In those circumstances, there  is practically no difference 
between the number  of i terations required by this modified algorithm and by 
the regular Newton method.  

Unfortunately,  unless the mesh rr ° is sufficiently fine to s tar t  with (with respect  to 
the difficulty of the problem and the desired final accuracy E), in general it won' t  be 
possible to ach ieve  this goal by correcting only. After each correction the global 
error  is est imated and compared with the error  for the preceeding correction. If no 
substantial  improvement  has occurred then  a mesh ref inement  is requested. 

A number  of error  conditions guarantee tha t  this process always terminates,  
ei ther with a solution purportedly accurate to level ~, or with an indication of failure. 
Possible reasons for failure are 

1. Error  in some of the input  parameters .  
2. Divergence of Newton 's  method; this could occur if, for instance, the Jacobian 

matr ix is very ill conditioned, and the safeguard mechanisms are not  enough to 
steer the i terat ion away from this situation. 

3. Not  enough mesh points are available; this condition is of course computer  
dependent ,  i.e., the more storage tha t  is available, the more mesh points can be 
used. 

4. Too much accuracy is requested for the computer  word length and the 
variations in scale of the solution to the problem. 

5. There  is no solution (shadow zone). 

6. TREATMENT OF INTERFACES IN THE MEDIUM 

In ray tracing, as in many  other  applications, it is possible for problem (2.9) to 
have jump discontinuities within the domain of interest.  These  discontinuities 
appear  in the function f(v,  ¢0L 

If f is discontinuous with respect  to the independent  variable v at  a known 
location 31, 0 < 31 < 1, then  the solution ~0*(r) or some of its derivatives may  be 
discontinuous at 81. If f i s  discontinuous with respect  to ¢o then  the locations of the 
possible discontinuities in oa * (r) or its derivatives are not  known a p r i o r i .  

Assume for simplicity tha t  f becomes discontinuous when the ray, or t ra jectory 
~*( r ) ,  t raverses a given surface ¢pl(r, oa) = 0 in (0, 1) x ~?a, and tha t  this occurs only 
once for r e(0, 1). Thus  the condition for oa*(r) to lie on this surface is tha t  
cpl[~-, oa*(r)] = 0. Then,  call 81 the (unknown) value of r for which the ray touches 
the interface. 

Assuming tha t  the desired solution has a known behavior  across the discontinuity, 
i.e., obeys a jump discontinuity condition of the form D[~0"(81 ), oa*(81+)] = 0, 
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where D is d-dimensional and _ represent the values on the right and left of the 
discontinuity, this problem can be reduced to the form (2.9) with smooth data. Any 
number of interfaces of this type can be treated simultaneously in the same way, 
provided one knows the order in which they are traversed and to which region the 
ray enters (i.e., which velocity function applies). Observe that one can as easily 
consider reflected as refracted rays; or change from P to S waves and vice versa. 

The idea of the reduction is to consider system (2.9) independently in the two 
regions [0, 81], [3,, I], and use the interface condition D -- 0 to couple these two 
problems. In each one of the intervals the problem is smooth. In the case of known 
crossing time 61, a system twice the size of the original one is considered (i.e., one 
copy for each subinterval), adding the interface condition as the necessary d 
additional boundary conditions. 

The case of unknown crossing time requires the introduction of an auxiliary 
dependent variable 61 (7), which satisfies the trivial first-order differential equation 
61'(~) = 0. The additional boundary condition is now given by the definition of the 
interface and the requirement tha t  ~o* lies on it for T = 8,: ~pl [61, ¢o *(81)]  = 0. If we 
call [0, 81 ], [61, 1] regions I and II, respectively, map each interval into [0, 1] and call 
cox, ~0rs the solutions on these subintervals, we have an augmented system of the 
form 

60/" = {~lf(T, ~ I ) ,  

~o.;i = (1  - 61)f(~, ~oH), 

6 , '  = O. 

e [0, 1] 

(6.1a) 

with boundary conditions 

g [ w l ( O ) ,  W l I ( 1 ) ]  = O, 

D[wdl) ,  oo1i(0)] =- O, 

q~,[51(1), todD] = O. (6.1b) 

Apparently the size of the problem has been greatly increased from d equations 
to (2 * d + 1) equations, or in the case of n interfaces to (n + 1) * d + n equations. 
But  the real dimension of the problem is J*  E, E being the number  of equations and 
J the number of mesh points. Having mapped all the subregions into [0, 1], it turns 
out tha t  a mesh with K subintervals in [0, 1] gets copied in each subregion, and 
therefore solving the transformed problem with (K + 1) points is equivalent to 
solving the original one with (n * K) 4- 1 points and therefore the size of the system 
of nonlinear equations remains effectively constant. In fact, this transformation 
amounts  to a reordering (and perhaps scaling) of the original equations. A similar 
procedure has been considered by Itoh (1975, 1976). 

It is possible to solve this type of problem directly, without  these transformations, 
but tha t  approach requires substantial changes in the basic program PASVA3, so it 
will be left for future development. 

6.1 Ray tracing on piecewise continuous media. The theory just developed can 
now be applied to equations (2.16). For simplicity, start  with the case in which there 
is only one discontinuity in the velocity field, i.e., when the ray crosses the curve 
¢p(x, z) = 0 (see Figure 2). 

Let  the value of s at the crossing point be 81, and let I = [0, 81], H = [81, S]. 
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Ind ica t ing  wi th  subsc r ip t s  I or  H the  quan t i t i e s  in the  two regions,  the  fol lowing set  
of  t en  d i f ferent ia l  equa t ions  a re  o b t a i n e d  f rom (2.16) and  the  p r o c e d u r e  desc r ibed  
a b o v e  

LO [ j  ~ O)4j COS LO3j 

w~s = c~4s sin c~3s 

o~j = ~4jvj[uaz cos o~,~j - ua~ sin ~.~./], 

~o~, = 0 

[.05,! ~ O . ) 4 j U J  

J = I ,  II, 

~'e [0, 1] (6.2) 

P0 ' ~ -  

PI 

FIG. 2. Diagram to illustrate a velocity structure with one discontinuity. 

wi th  t he  b o u n d a r y  condi t ions  

~ , ( 0 )  = Xo, 

~ , ( 1 )  - ~%,(0)  = O, 

~1 , , (1 )  = x l ,  

¢%(0)  = Zo, ~ , ( 0 )  = ~ , , ( 0 )  = 0 

td2,(l) - ~2H(O) ~- O, 

¢02H(1) = Zl. (6.2a) 

T h e  r e m a i n i n g  two condi t ions  a re  g iven by  Snel l ' s  Law,  which  the  r ay  m u s t  obey  
w h e n  t r ave r s ing  a m a t e r i a l  d i scont inui ty ,  and  by  the  fac t  t h a t  the  r ay  m u s t  be  on 
the  curve  ¢p = 0 for  s = ~1. Le t t i ng  P~, = [¢%(1), o~2,(1)] =[¢%,(0), ~%,(0)] we get  

~ ( P , , )  = O, 

vu(P~)[q~(P,,)sin ~i(1) - ~ ( P s , ) c o s  ~z(1)] 

- vz(P,~ )[qv~(P,~)sin @1(0) - ¢p~(P~)eos +r1(O)] = O. (6.2b) 

F o r  ins tance ,  for  a ver t ica l  faul t  cp(x, z) = x - X F  wi th  X F  given,  (6.2b) r educes  to 
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~%(1) = xF  

vIl(P~, )sin @i(1) - v1(P~, )sin @id0) = 0. 

In general, we can use a similar technique to handle any number  of interfaces. In 
order  to keep the technical details simple we assume tha t  we have k material  
interfaces q~i(x, y )  = O, i = 1, . . . ,  k, which subdivide the region of interest  12 into a 
subregions in which we have different expressions for the velocity. We also assume 
tha t  the ray traverses the interfaces and enters the various subregions in a given 
order. We simply write {6.2) with 2 replaced by c + 1, where c is the number  of 
interfaces crossed. ~§:1 w41(0) -= tip gives the position of the p t h  crossing point, and 
~5+_-~ ~5i(1) gives the total  travel  time. The  boundary  conditions are similar to (6.2a) 

Po 

@2(x,z :0 @3(x,z) :0 
\ P,, / ~, 

Fro.  3. D i a g r a m  to  i l l u s t r a t e  a c o m p l i c a t e d  v e l o c i t y  s t r u c t u r e  (c = 5, k = 4, a n d  o = 5), 

and we have c sets of conditions (6.2b). We have 5(c + 1) first-order differential 
equations and the same number  of boundary  conditions 

4 end point conditions, 
c initial t ime conditions, 
2c - 2 continuity conditions, 
c - 1 Snell 's Law conditions, 
c - 1 interface crossing conditions. 

For  some applications it may  be of interest  to replace some of the boundary  
conditions determining transmission across interfaces by reflection conditions. Thus  
a bounce against an interface also will be considered as a crossing. The  method 
described here allows the t rea tment  of fairly complicated s tructures  (see Fig. 3) as 
will be shown in a later  paper. 

The  procedure  in three dimensions is the same, except tha t  equations (2.11) to 
(2.12) are used. 
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APPENDIX 

J a c o b i a n  m a t r i c e s  f o r  2 - d i m e n s i o n a l  r a y  t r a c i n g .  T h e  5 × 5 J a c o b i a n  m a t r i x  o f  
t h e  r i g h t  h a n d  s i d e  o f  e q u a t i o n s  (2.16) is  

w i t h  

j =  !'0 i] 0 - w ~ s i n c o a  coscoa 0 
0 o~4 cos  o~,~ s in  wa 

j~  j3~ j~ 
0 0 0 

t . ~  u~ o~4u~ 0 u 0 3  

ja~ = o~{vx(Uz 

ja2 = w4(Vz(Uz 

j3~ = ~ v ( - u :  

j~  = v(uz cos 

cos  o~a - ux s in  ~a) + v (uzx  cos  o~a - u ~  s in  ¢o3)} 

cos  ~a - u.~ s in  ~a) + v ( u ~  cos  o~a - u =  s in  ~a)} 

s in  o~a - ux cos  ~a } 

wa - Ux s in  o~a }. 

I n  t h e  p i e c e w i s e  c o n t i n u o u s  case ,  t h e  o n l y  a d d i t i o n a l  n o n t r i v i a l  d e r i v a t i v e s  S t e m  
f r o m  (6.2b).  F o r  t h e  c r o s s i n g  o f  i n t e r f a c e  j w e  h a v e ,  in  a n  o b v i o u s  n o t a t i o n ,  t h a t  t h e  

b o u n d a r y  c o n d i t i o n  is 

By =-- vj+~[q~y~ s in  #j(1) - qpjz cos  # j (1) ]  - vj[qgj., s in  #j+,(O) - qpj~ cos  ~bj+~(O)] = 0 

a n d  t h e  r e l e v a n t  p a r t i a l  d e r i v a t i v e s  a r e  

OXj+l (0) 

0Bj 
0~j+l(0) 

- -  - vj+l,x{qDj, s in  ~j(1) - 9~jz cos  ~ j (1) )  

-vj{cpj .xx s in  ~j+, (0)  - q~j,zx cos  ~pj+l(0)}, 

O B j  _ vj+~,z(qDy, s in  ~y(1) - q~jz cos  ~i(1)} 
0z j+ l (0)  

-vj(q~y,xz s in  ~ j + , ( 0 ) -  ~y,zz cos  ~j+l (0)} ,  

vj{q~jx cos  ~j+, (0)  + q~yz s in  @j+,(0)}, 

oBi 
- Vj+l (q~y,xx s in  ~j(1) - ~j.xz cos  tpj(1)} 

oxj(1) 

-Vyx(q~j.  s in  ~Pj+l(0) - q~y~ cos  tpj+,(0)}, 

oBj 
- Vj+l(e;j.xz s in  @y(1) - q~y,~z cos  ~j(1)} 

OzA1) 

-vj~(q~jx s in  ~j+,(0)  - q~j~ cos  ~pj+,(0)}, 
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aB~ 
- -  - -  Vj+l{q)jx COS @j(1) + ¢pjz sin @j(1)}. 
a~j(1) 

J a c o b i a n s  fo r  3 - d i m e n s i o n a l  r a y  t r a c i n g .  The 8 × 8 Jacobian matrix correspond- 
ing to equations {2.11) has the nonzero j~, elements listed below. We will use the 
auxiliary quantities 

V ~  1 = Uxx092 4- Uxy094 4" UxzOJ6~ 

G~., = Ux, 

V~3 = Uxy092 4. Uyy094 4. Uyz096, 

G~ 4 = uy, 

V~,  = uxz092 + uyz094 + Uzz096, 

G,~ = u~. 

Nonzero elements of Jacobian matrix 

j12 = 098, j18 = 092; 

j2, = 098{vx(Ux - G092) + v(uxx  - G~,092)}, 

122 = -09sv(  G,~ 092 + G) ,  

J23 = ¢08(Vy(l lx  - -  G092) + v ( U x y -  G,~,092)} 

J24 = -09sv092G,~ 4 

J25 ---- 098{Vz(Ux - -  G w 2 )  4- V(Uxz  - G,~r092)} 

J26 ~ -098vG,~092 

128 = V ( U x -  G~2) 

134 = 098, j3s = 094; 

j~, = 098(v~(u~ - G09~) + v ( u ~ -  G~,09~)}, 

J42 ~ --098 v G ~ 0 9 4 ,  

J43 = 0 9 8 { v y ( u y -  G094) + v ( u ~ , y -  G,~:,094)}, 

144 = -09sv (G~4094  4- G), 

J45 ~- 098{vz(09y - -  G094) "4- v(09yz - G~.~,094)}, 

146 ---- -098vG~094, .]'48 ---- V(Uy - -  G094);  

J56 ~-- 098, j58 = 096; 

J~l =09s{Vx(U~ - G096) + v(ux~ - G~,096)}, 

.]'62 = --098 v V ~  2 096, 

j63 = w8{vy(u~ - G096) 4. V ( U y z -  G,~09~)}, 
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j64 = -¢-o8vG,,,4~6, 

j 6 ~  = - ~ o s ( v z ( U z  - Gco6) + v ( u ~ _ ,  - G~o6)},  

j66 = -~osv(G,~,co6 + G), j ~  = v ( u ~  - G~o6); 

j71 = 6)8Ux, j73 = tOSUy, j75 = O)8Uz, ./'78 = U. 
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